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Abstract. Pancreatic cancer (PC) is an aggressive malignancy with rapid progression and poor 

prognosis. The genetic heterogeneity of PC contributes to its malignancy. N6-methyladenosine 

(m6A) RNA modification and its regulatory factors are associated with poor prognosis and 

immunotherapy efficacy in PC patients. This study aimed to investigate the impact of m6A-related 

signature genes (m6ARS) on PC using single-cell RNA sequencing (scRNA-seq) and the Secretion 

Modification Region (SMR) method with multi-omics data. Methods included AddModule scoring, 

single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network 

analysis (WGCNA) to analyze m6ARS at the single-cell and whole transcriptome levels. The SMR 

method identified pathogenic genes associated with PC among m6ARS. Patients were stratified 

into high and low-expression groups based on m6ARS expression, revealing survival differences. 

Performance was evaluated using receiver operating characteristic (ROC) curves and 

immunohistochemistry (IHC) staining. Functional and pathway analyses, including GSEA and 

protein-protein interaction (PPI) networks, were conducted. The clinical value of m6ARS was 

explored through correlation analysis with clinical parameters, single-cell, and spatial 

transcriptome analyses, as well as immune microenvironment studies. Drug sensitivity analysis 

assessed m6ARS's potential role in chemotherapy response. Results identified a turquoise module 

comprising 882 m6ARS genes at both single-cell and bulk transcriptome levels. SMR analysis 

found 102 proteins associated with PC, with three key m6ARS genes—GCC2, UBE2D3, and 

TMX1—showing causal relationships with PC. TMX1 was confirmed as a prognostic marker for 

PC, with upregulation linked to tumor promotion and worse prognosis. Clinical and immune 

analyses, as well as drug sensitivity assessments, suggest TMX1's potential as a biomarker for PC 

prognosis and immunotherapy response. This study integrated single cell sequencing and SMR 

analysis to identify the shared gene TMX1, emphasizing its potential as a robust prognostic 

biomarker for PC and its response to immunotherapy. Therefore, targeting TMX1-mediated 

oxidative stress may represent a novel therapeutic strategy for PC and offer new avenues for future 

drug development. 
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1 INTRODUCTION 

 

According to the GLOBOCAN 2020 data provided by the International Agency for Research on 

Cancer, pancreatic cancer (PC) is recognized as one of the most fatal malignancies, with nearly an 

equal number of fatalities (466,000 individuals) and incidences (496,000 individuals) (Sung et al., 

2021). Approximately 85% of PCs are classified as adenocarcinomas, whereas pancreatic 

endocrine tumors make up less than 5% of PCs (Wolfgang et al., 2013). In the early stages, PC 

typically presents subtle or inconspicuous symptoms. By the time the symptoms become specific 

enough to suggest PC, the disease may already be at an advanced stage (Hou et al., 2020). Despite 

advancements in medical technology, the limited efficacy of nonsurgical treatment modalities in 

addressing the challenges posed by PC continues to hinder progress. The prognosis remains 

exceptionally unfavorable, with a mere 25% one-year survival rate and a five-year overall survival 

rate (OS) below 5% (Ansari et al., 2015). Existing treatment and diagnostic techniques for PC are 

inadequate, emphasizing the need for a primary research focus on the development of innovative 

prognostic biomarkers, enhancement of early detection rates, and identification of new therapeutic 

targets to improve survival outcomes. N6-methyladenosine (m6A), a chemical modification found 

in various RNA species, shows promise as a potential biomarker for diverse biological processes 

associated with cancer (Liu et al., 2018). As the most prevalent RNA modification in eukaryotes, 

m6A modification influences gene expression regulation and disease progression by modulating 

various aspects of RNA biology, including RNA stability, nuclear localization, mRNA splicing, 

miRNA processing, and mRNA translation (Taketo et al., 2018; Oerum et al., 2021). Numerous 

studies have confirmed an association between m6A modifications and oxidative stress. However, 

complex and subtle interactions exist between oxidative stress and m6A modifications in the 

process of tumor occurrence and progression. It should be emphasized that reactive oxygen species 

(ROS) have the ability to dynamically regulate the expression and activity of m6A regulatory 

factors, leading to changes in intracellular m6A levels (Hou et al., 2021). Conversely, m6A 

modification of genes associated with oxidative stress can potentially exert regulatory control over 

their own expression, thereby modulating the delicate equilibrium between oxidation and 

antioxidation as well as influencing the initiation and progression of tumorigenesis (Fu & Zhuang, 

2020; Wang et al., 2019). Therefore, understanding the underlying mechanism by which oxidative 

stress and m6A methylation synergistically contribute to cancer development is of paramount 

significance for the advancement of tumor therapies. 

Mendelian randomization (MR) is a robust technique used to investigate the potential causal 

association between exposure and outcome by leveraging genetic variation as an instrumental 

variable (IV) (Davey et al., 2014). Compared with conventional statistical approaches employed 

in association studies, MR effectively addresses confounding and reverse causality issues, making 

it increasingly popular for investigating causal mechanisms (Thanassoulis & O'Donnell, 2009; 

Burgess et al., 2015). We have effectively employed an innovative analysis framework known as 

the MR/SMR method, which integrates cis-expression quantitative trait loci (cis-eQTL) or cis-

DNA methylation QTL (cis-mQTL) with GWAS data. This approach has facilitated the 

identification of genetic expression or DNA methylation sites associated with a wide range of 

phenotypic pleiotropy or potential causal relationships (Yang et al., 2021). 

In this study, we conducted a comprehensive investigation of the characteristics of m6ARS 

across multiple omics levels. We employed single-cell and WGCNA methodologies to identify 

m6ARS and integrated PC data for SMR analysis, which robustly confirmed the causal association 

between m6ARS and PC as the disease-causing gene. Subsequent analysis revealed that TMX1 is 
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a potent prognostic biomarker with potential implications in the immunotherapy response for PC. 

Thus, targeting TMX1-mediated oxidative stress may offer an innovative therapeutic strategy for 

treating PC, thereby providing valuable insights for future drug development. A workflow diagram 

illustrating our study is shown in Figure 1. 

 

2 METHOD 

 

2.1  Data collection and processing 

We obtained the gene expression profiles and relevant clinical data of TCGA-PAAD patients from 

the UCSC Xena database. Transcripts per million (TPM) values were extracted for subsequent 

analysis, with genes exhibiting an average expression level below 0.1 excluded. Samples lacking 

complete or missing clinicalopathological information were excluded from the study. Furthermore, 

we retrieved a PC single-cell RNA sequencing dataset (GSE212966) from the Gene Expression 

Omnibus (GEO) and selected six cases for analysis. The PC spatial transcriptome dataset used in 

our study was sourced from GSM6177618 within the GEO database. To identify m6A-related 

feature genes (m6ARS), we compiled a list of 26 previously reported m6A-related genes 

mentioned in the literature (He et al., 2019). 

 

2.2  Collection and processing of single-cell RNA sequence analysis data 

We designated six datasets of single-cell RNA sequencing in pancreatic cancer (PC) as PDAC1, 

PDAC2, PDAC3, PDAC4, PDAC5, and PDAC6. Subsequently, the single-cell sequencing data 

were analyzed using the 'Seurat' software package (Stuart et al., 2019). Quality control (QC) was 

conducted by excluding cells with a mitochondrial gene content below 10% and genes expressed 

within a range of 200-7000 in at least three cells. Subsequently, we identified 2000 highly variable 

genes for further analysis. To mitigate batch effects across the six samples, we employed the 

harmony software package. Cell clusters were constructed using the functions FindClusters and 

FindNeighbors followed by visualization using the t-SNE method. Finally, simple cell annotation 

was performed using the SingleR package. The activity of a specific gene set in each cell was 

quantified using the 'AddModuleScore' function of the Seurat package. To analyze differentially 

expressed genes (DEGs) between the two groups while keeping other parameters at default values, 

we utilized the 'FindMarkers' function in the Seurat package with the Wilcoxon test (p.adj<0.05) 

for the statistical significance calculation of DEGs. Genes exhibiting differential expressions 

between high and low m6A score cells were considered to be involved in m6A at the single-cell 

transcriptome level and subsequently included in WGCNA analysis at the overall transcriptome 

level. 

 

2.3  Weighted Gene Co-expression Network Analysis (WGCNA) 

Differential gene expression analysis was performed between PC tissues and healthy tissues in 

TCGA using the "limma" and "pheatmap" packages in R Studio software. The applied criteria 

were logFCfilter = 2 and adj.P.Val.Filter = 0.05. Additionally, Weighted Gene Co-expression 

Network Analysis (WGCNA), a systems biology approach capable of uncovering gene correlation 

patterns across diverse samples, was employed to identify highly co-varying gene sets (Langfelder 

& Horvath, 2008).  In our study, we utilized the R package 'WGCNA' to conduct WGCNA analysis 

of TCGA-PAAD bulk RNA-seq data. Initially, we determined an optimal soft threshold β that 

fulfilled the criteria for constructing a scale-free network. Subsequently, we transformed the 

weighted adjacency matrix into a Topological Overlap Matrix (TOM) and calculated the 
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dissimilarity (dissTOM). We employed the dynamic tree-cutting method for gene clustering and 

module identification. The genes obtained from these modules were designated as m6ARS. 

Similarly, we acquired lists of m6A-related genes for each module and identified the module with 

the highest correlation with the m6Ascore for further investigation. 

 

2.4  SMR analysis is used to identify PC-related pathogenic genes 

The SMR method proposed by Zhu et al. (2016) integrates summary-level data from genome-wide 

association studies (GWAS) and expression quantitative trait loci (eQTL) studies to identify genes 

exhibiting pleiotropic associations with complex traits, thereby enhancing the scientific rigor and 

academic professionalism of this study. This study employed SMR analysis to identify novel 

pathogenic genes associated with pancreatic cancer (PC) and investigate their potential functional 

significance. GWAS data for PC (id: bbj-a-140) were obtained from the IEU Open GWAS project. 

The eQTL data used in this study were derived from the GTEx v.8 dataset. We utilized the 

heterogeneity in dependent instruments (HEIDI) test to ensure that significant SMR results indeed 

indicate pleiotropy or causal relationships rather than being influenced by low correlation linkage 

models (Zhan & Li, 2024).  SMR software (version 1.3.1) was employed to perform SMR and 

HEIDI tests, with a predetermined significance level of P < 0.05 for the former analysis. In the 

context of the HEIDI test, a P value > 0.05 indicates that linkage disequilibrium does not affect 

the causal relationship between exposure and outcome, thereby characterizing genes lacking 

heterogeneity as conservative factors. The intersection genes derived from merging the results of 

SMR analysis with the module exhibiting maximal correlation with M6Ascore are considered both 

pathogenic genes associated with PC and m6ARS. 

 

2.5  Performance evaluation and clinical pathological correlation of shared gene features 

SMR analysis identified three intersecting genes, namely GCC2, UBE2D3, and TMX1, which 

exhibited the highest correlation with the m6Ascore. These genes were identified as shared 

pathogenic genes associated with the m6A-related features. TCGA-PAAD transcriptome data were 

utilized to validate these shared pathogenic genes by conducting differential analysis between the 

tumor and normal groups. Genes meeting the criteria of P<0.05 were selected for further 

investigation. To explore the relationship between the expression of these shared pathogenic genes 

and patient prognosis, they were stratified into high and low-expression groups based on median 

gene expression levels. Kaplan-Meier (KM) curves were generated using "survminer" and 

"survival" packages to analyze OS in PC patients. The prognostic efficiency of the model was 

evaluated by generating ROC curves using the timeROC package. Valuable resources such as 

protein expression profiles, subcellular localization information, and IHC images were obtained 

from the Human Protein Atlas (HPA) database (Digre & Lindskog, 2021). The IHC staining 

images of shared pathogenic genes were obtained from the HPA database, providing visual 

evidence that demonstrates the differential expression and spatial distribution of these genes 

between PC and normal tissues. Building upon our previous analysis, we selected TMX1 for 

further investigation to explore its correlation with clinicopathological parameters. 

 

2.6  PPI network analysis and GSEA enrichment analysis of TMX1 pathogenic gene 

We utilized the GeneMANIA database to investigate the interactions between hub genes and their 

associated genes to gain a more comprehensive understanding of the biological mechanisms and 

functions in which these genes are implicated. Gene Set Enrichment Analysis (GSEA) is an 

ontology-based approach that calculates enrichment scores for gene sets and identifies distinct 
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functional phenotypes (Joly et al., 2021) according to the median level of gene expression. GSEA 

was used to compare biological pathways between the two groups. The 

c2.cp.kegg.Hs.symbols.gmt gene set was obtained as a reference from the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) with a false discovery rate (FDR) < 0.05. 

 

2.7  Analysis of scRNA-seq and stRNA-seq data reveals the expression profile of TMX1 in 

PC 

To investigate the role of TMX1 in the tumor microenvironment (TME) at the single-cell 

transcriptome level, we examined the expression patterns of TMX1 across various cell types. We 

used Seurat (version 4.2.0) to analyze stRNA data and assess the expression levels of TMX1 in 

PC. Spatial spots containing fewer than 300 genes or more than 30% mitochondrial genes were 

excluded from subsequent analysis. The original counts were normalized using Seurat's transform 

function, and spatial parameters were determined. Dimensionality reduction was achieved by 

implementing RunPCA and RunUMAP functions. 

 

2.8  Immune Landscape Assessment 

The R package 'GSVA' is used to evaluate the tumor immune microenvironment (TIME) through 

the ssGSEA method. ssGSEA is an extension of GSEA that can calculate individual enrichment 

scores (ES) for each sample (Xiao et al., 2020). 

The Gene Set Variation Analysis (GSVA) algorithm transforms a gene expression matrix 

containing individual genes into an expression matrix consisting of specific gene sets and 

subsequently calculates their enrichment scores (ES) (Hänzelmann et al., 2013).  The levels of 16 

immune cells and 13 immune-related functions were compared between the high and low-

expression groups of TMX1 using ssGSEA scoring. Spearman's correlation analysis was used to 

investigate the association between TMX1 expression and immune cell infiltration. 

 

2.9  Drug sensitivity analysis 

Sensitivity scores for each small-molecule compound in both high-risk and low-risk patient groups 

were calculated using the pRRophetic package in R software. Subsequently, we used the PubChem 

website to visualize the 3D drug conformations. 

 

3 RESULTS 

 

3.1 M6A correlation characteristics in single-cell transcriptome 

We obtained scRNA-seq data from six patients diagnosed with PC. To mitigate batch effects, we 

successfully integrated the data from all six samples using the Harmony software package (Figure 

1B, C, and D). Subsequently, we performed principal component analysis (PCA) and T-

distribution Random neighborhood embedding (t-SNE) to reduce the dimensionality reduction of 

the first 2000 variants. Clustering was then conducted by identifying the inflection point on the 

screen plot at 18 (Figure.1E), resulting in a total of 18 clusters with a resolution of 0.2 (Figure.1A). 

By utilizing marker genes specific to different cell types, we accurately annotated these cells into 

nine major clusters: memory B cells, bone marrow mesenchymal stem cell-derived chondrocytes, 

endothelial cells, epithelial cells, macrophages, osteoblasts, multiple CD4+ T cell effector memory 

subsets, CD8+ central memory T cells, and stem cell types (Figure.1F). To effectively and 

comprehensively quantify m6A activity across different cell types, we employed the 

"AddModuleScore" function within the Seurat package to calculate the expression levels of 
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twenty-six gene sets associated with m6A in all individual cells analyzed (Figure. 1G). Among the 

nine identified cell types, significantly elevated m6A activity was specifically observed in 

macrophages， T-cells, and monocytes (Figure.H). Based on m6A activity levels, we further 

categorized these cells into high or low m6A groups, which allowed us to identify a total of three 

thousand three hundred two differential expressed genes (DEGs) between these two groups for 

subsequent analysis. 

 

 

Figure 1 Features of m6A correlation in single-cell transcriptome analysis. A. The single-cell transcriptome lineage 

map illustrates the spatial distribution and relative abundance of distinct cell subpopulations. B. analysis of the 

correlation between RNA features and the ratio of mitochondrial genes to ribosomal genes was performed. C. The 

distribution of RNA features (nFeature_RNA, nCount_RNA, percent.mt, percent.Ribo) in each sample was 

examined. D. PCA analysis elucidates the cellular distribution across different samples while mitigating batch 

effects. E. Heatmap visualization was employed for data representation. F. t-SNE plot unveils cell types identified 

by marker genes. G. Activity scoring for m6A in each cell (m6A.score) was conducted. H. Distribution analysis of 

m6A.score among different cell types was carried out. 
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3.2 Identification of hub modules and M6A-related genes in bulk RNA sequences data 

The ssGSEA algorithm is commonly used to assess changes in biological processes and pathway 

activity of individual samples. In this study, we employed the ssGSEA algorithm to calculate m6A 

activity scores for each TCGA-PAAD sample as phenotypic data for subsequent WGCNA 

analysis. To identify modules significantly associated with m6A scores, we conducted WGCNA 

analysis on the TCGA-PAAD dataset, specifically utilizing 3302 m6A-related outlier-excluded 

DEGs identified at the single-cell sequencing level to construct a co-expression network (Figure 

2.A B). A soft threshold of power= 7 (R2= 0.874) was selected to ensure the establishment of a 

scale-free topological network in our study. By setting the minimum module gene count to 60 and 

MEDissThres to 0.25, we successfully obtained six modules (Figure 2.C). Our findings 

demonstrated that the turquoise module exhibited a robust positive correlation with the overall 

m6A score in RNA-seq data (cor=0.51), whereas the green module displayed a strong negative 

correlation with the overall m6A score in RNA-seq data (cor= -0.47, Figure2.D). Furthermore, 

scatter plots depicting Gene Significance (GS) versus Module Membership (MM) for genes within 

the turquoise module revealed a significant correlation (cor=0.51, p=3.8e−19, Figure2.E), 

suggesting the functional relevance of genes within this module to m6A regulation. Therefore, we 

selected 882 genes from the turquoise module for further analysis (Supplementary Table 1). 

 

 

Figure 2 WGCNA analysis. A. Soft threshold selection. B. The tree graph shows the hierarchical clustering of GEO 

samples. The heat map at the bottom represents the M6A score for each sample, calculated by the ssGSEA 

algorithm. C. The cluster tree of WGCNA analysis. D. Modules - heat maps of traits where the turquoise module is 

closely related to m6A score. E. Scatter plot showing the relationship between GS and MM in the turquoise module. 

 

3.3 SMR analysis to identify PC-associated pathogenic genes 

We performed SMR and HEIDI tests to identify proteins associated with PC. Among the 102 

proteins that passed both tests (p_SMR < 0.05 and p_HEIDI > 0.05) in PC (supplement Table 2), 

three characteristic genes were found within the turquoise module containing 882 genes (Fig.3A): 

GCC2 (p_SMR=0.0094, p_HEIDI=0.4273), UBE2D3 (p_SMR=0.0187, p_HEIDI=0.7186), and 
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TMX1 (p_SMR=0.01238, p_HEIDI=0.0867). Furthermore, we plotted the SMR trajectories for 

GCC2, UBE2D3, and TMX1 (Figure 3B, C and D). 

 

 
 

Figure 3 SMR analysis was performed to identify PC-related pathogenic genes. A. Venn diagram shows the 

intersection genes between the turquoise module and SMR. B-D. SMR trajectory plots for GCC2, UBEAD3, and 

TMX1, with orange dashed lines indicating estimated XY (xy) values at top cis-eQTLs (rather than regression lines) 

and error bars representing standard errors of SNP effects. 

 
3.4 Performance evaluation and clinical pathological correlation of shared genetic signatures 

Intersection analysis identified three pathogenic genes associated with PC, namely GCC2, 

UBEAD3, and TMX1. Validation using TCGA-PAAD samples demonstrated consistent 

differential expression of UBEAD3 (P=0.00373) and TMX1 (P= 1.36e-05), whereas the 

differential expression of GCC2 (P= 0.0543>0.05) was not statistically significant (Figure 4A, E, 

I). Upregulation of GCC2 and TMX1 and downregulation of UBE2D3 were observed in PC 

tissues. The prognostic evaluation was conducted through survival analysis (Figure 4B, F, J), with 

P-values for OS being 0.103 for GCC2, 0.057 for UBEAD3, and 0.001 for TMX1. ROC curves 

generated by the timeROC package revealed that only TMX1 had an AUC>0.6 among GCC2, 

UBEAD3, and TMX1 (Figure 4C, G, K). Diagnostic ROC curves were plotted (Figure 4D, H, and 

L). Further analysis of protein levels in PC tissues compared to normal pancreatic tissues using 

data from the HPA database showed consistency between IHC staining results for GCC2, 

UBEAD3, and TMX1 antibodies HPA035849, HPA003920 and HPA003085, respectively (Figure 

5A, B, C). These findings validate previous observations at the transcriptional level, specifically 

regarding the association between high TMX1 expression and poor PC prognosis. Subsequently, 

statistical analysis was performed on TMX1 to determine its prognostic significance at a 

significance level of P<0.05. The clinical correlation analysis (Table l) revealed significant 

differences (P<0.05) in different N stages, overall stages, and grades between high and low 

expression of TMX1, suggesting a strong association between TMX1 and the clinicopathological 

features of PC. 
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Figure 4 Performance evaluation of GCC2, UBEAD3, and TMX1. A-D. The differential box-plots (P=0.0543), 

survival curves (P=0.103), time-dependent ROC curves (1-year AUC=0.529, 3-year AUC=0.519, 5-year 

AUC=0.540), and diagnostic ROC curve (AUC=0.602) for GCC2 are shown. E-H.The differential box-plots 

(P=0.00373), survival curves (P=0.057>0.05), time-dependent ROC curves (1-year AUC = 0.559, 3-year AUC 

=0.474, 5-year AUC =0.554 ) and diagnostic ROC curve (AUC =0.543 ) for UBE2D3 are shown. I-L.The 

differential box-plots (P<1 .36e -05 ), survival curves (P=0.001 ), time-dependent ROC curves(1-yearAUC =0.601 , 

3-yearAUC =0.604 , 5-yearAUC =0.761 ) and diagnostic ROC Curve (AUC =0.612 ) for TMX1 are shown. 

 

 

Figure 5 The expressions of GCC2, UBEAD3, and TMX1 proteins were confirmed. A. IHC staining revealed that 

the GCC2 protein had high expression levels in both normal pancreas tissues and PC tissues when using the 



Lin et al. Fitness, Performance & Health Journal, Year, Vol.4 No. 1 (2025) p. 9-28 

18 

antibody HPA035849. B. IHC staining demonstrated that the UBE2D3 protein had low expression levels in both 

normal pancreas tissues and PC tissues when utilizing the antibody HPA003920. C. IHC staining indicated that the 

TMX1 protein had low expression levels in normal pancreas tissues but moderate expression levels in PC tissues 

when employing the antibody HPA003085. This finding was consistent with transcriptome-level results. 
 

Table 1: Correlation between TMX1 and the clinicopathological features of PC 

 

Characteristics 
Low expression of 

TMX1 

High expression of 

TMX1 
P value 

n 89 90  

Pathologic T stage, n (%)   0.052 

T1&T2&T4 22 (12.4%) 12 (6.8%)  

T3 66 (37.3%) 77 (43.5%)  

Pathologic N stage, n (%)   0.015 

N0 32 (18.4%) 18 (10.3%)  

N1 54 (31%) 70 (40.2%)  

Pathologic M stage, n (%)   0.764 

M0 34 (40%) 46 (54.1%)  

M1 3 (3.5%) 2 (2.4%)  

Pathologic stage, n (%)   0.021 

Stage I&Stage III&Stage 

IV 
20 (11.4%) 9 (5.1%)  

Stage II 67 (38.1%) 80 (45.5%)  

Histologic grade, n (%)   0.023 

G1 22 (12.4%) 9 (5.1%)  

G2 48 (27.1%) 48 (27.1%)  

G3 17 (9.6%) 31 (17.5%)  

G4 1 (0.6%) 1 (0.6%)  
 

3.5 PPI network analysis and GSEA enrichment analysis of the pathogenic gene of TMX1 

GeneMANIA analysis revealed significant interactions between TMX1 and other genes (Figure 

6A). Interestingly, we observed a close association between TMX1 and LRRK2, TXN (the 

thioredoxin), and TXNL1 in terms of their biological functions. Notably, the TXN system acts as 

an effector triggered by NADPH + H+/FAD oxidation-reduction reactions to maintain 

homeostasis, bioenergetics, detoxification drug networks, and cellular survival in oxidative stress-

related diseases (Calandria et al., 2023). The primary function of TXNL1 is to regulate oxidative 

stress, thereby preserving cellular integrity by maintaining redox homeostasis. Additionally, 

TXNL1 exhibits a robust association with cancer therapeutics and diseases associated with 

oxidative stress (Zhao & Qi, 2021). Furthermore, our findings demonstrated that TMX1 and its 

associated genes primarily function in the regulation of ROS responses, including oxidative stress 

and hydrogen peroxide-induced cellular responses. Moreover, they played a negative modulatory 

role in these responses. Additionally, they are involved in controlling hydrogen peroxide-triggered 

cell death and oxidoreductase activity related to sulfur donors. To explore the potential biological 

functions of TMX1 in PC, we performed. The results revealed that reduced expression of TMX1 

was predominantly associated with basal cell carcinoma occurrence, drug metabolism (particularly 

cytochrome P450 enzyme family), exogenous chemical metabolism, vitamin A metabolism, and 

ribosome synthesis and assembly (Figure 6B). Conversely, elevated expression of TMX1 primarily 

participates in crucial biological processes such as the regulation of immune response, control of 

cell cycle, cell communication, and maintenance of tissue structure (Figure 6C). Therefore, TMX1 
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may serve as a pivotal regulatory factor in PC and other diseases, and alterations in its expression 

levels can affect multiple biological pathways and disease progression. 

 

 

Figure 6 Biological processes associated with TMX1 and its related genes. A. The biological function of TMX1 and 

its related genes mainly involves regulating the response to reactive oxygen species. B-C. GSEA enrichment 

analysis was performed on the TMX1 high and low expression groups. 

 

3.6 ScRNA-seq and stRNA-seq data analysis revealed the expression distribution of TMX1 

in PC 

To investigate the role of TMX1 in the TME at the single-cell transcriptome level, we analyzed 

the expression patterns of TMX1 across different cell types. Using t-SNE plots and bubble plots 

(Figures 7B and C), we visually annotated and examined the expression levels of TMX1 in various 

cell types. Monocytes exhibited the highest average expression level (close to 1), and a significant 

proportion of cells expressing this gene (over 60%), suggesting that TMX1 is predominantly active 

in monocytes and serves as a major contributor among these cell types. Initially, quality control 

was performed on the stRNA-seq data using the following filtering criteria: nFeature_Spatial_filt 

> 300 and nCount_Spatial_filt > 500 (Figure 7D). Subsequently, we plotted TMX1, 

TMX1+monocyte, TMX1-monocyte, and epithelial cells within PC tissue to identify overlapping 

regions at spatial capture locations (Figure 7E-H). Subsequently, we employed the mistyR 

algorithm (Tanevski et al., 2022) to facilitate spatial transcriptomic analysis of cell-cell 

interactions (Figure 7I-J). 
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Figure 7 Data analysis of scRNA-seq and stRNA-seq. A. The utilization of t-SNE plot facilitates the reannotation of 

cells, thereby unveiling the cell types identified through marker genes. B. Feature maps expressed by TMX1. 

C.TMX1 expression bubble chart. D. Quality assurance of stRNA-seq data. E-H. Visualization of TMX1, 

TMX1+Monocyte, TMX1-Monocyte, and Epithelial cells in spatial transcriptome tissue sections of PC. I. Heat map 

depicting cell-cell interactions in spatial transcriptomics analysis. J. The spatial transcriptomic cell communication 

network diagram displays the weight and quantity of interactions between subsets of cells. 
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3.7 Immune Landscape Assessment 

To investigate the immune landscape of patients with high and low TMX1 expression, we utilized 

the ssGSEA algorithm to analyze the abundance. Compared to patients with low TMX1 

expression, those with high TMX1 expression exhibited augmented anti-tumor immune-related 

functions (Figure 8A), including central memory T cells (TCMs), Helper T cells, Eosinophils, 

Neutrophils, and Th2 cells. This observation suggests a positive correlation between high TMX1 

expression and enhanced anti-tumor immunity. We employed the CIBERSORT algorithm to 

calculate the proportions of 22 immune cell subtypes in PC patients and considered a P-value 

threshold of <0.05, which was statistically significant (Figure 8B). Additionally, we employed the 

ssGSEA algorithm to investigate the association between TMX1 expression and immune cell 

subtype (Figure 8C). Our analysis revealed a positive correlation between TMX1 and Helper T 

cells, Th2 cells, TCMs, Neutrophils, Eosinophils, Th1 cells, Mast cells, Macrophages, and 

Activated Dendritic Cells (aDCs); however, a negative correlation was observed between CD56 

bright NK cells, Th17cells, and Plasmacytoid dendritic cells (pDCs). To further elucidate these 

relationships, scatter plots were generated for selected cell types that met the criteria of a 

correlation coefficient R>0.3 (Figure 8D-F), including TCMs (P<0.001, R=0.357), Helper T cells 

(P<0.001, R=0.477), and Th2 cells (P<0.001, R=0.455). Immune correlation analysis supported 

these findings (Figure 8G), providing additional evidence of an association between TMX1 and 

m6A regulatory factors (Figure 8H). 
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Figure 8 Immune landscape assessment. A. Differences in immune cell and immune function scores were observed 

between the high TMX1 group and the low TMX1 group. B. Relative proportions of immune cell infiltration were 

compared between the high TMX1 group and the low TMX1 group. C. The relationship between TMX1 expression 

in PC patients and subtypes of immune cells was investigated. D-F. Correlations between TMX1 expression and 

parameters were examined, including T Central Memory Cells, T Helper Cells, and Th2 Cells. G. A correlation 

heatmap was generated to illustrate the associations of TMX1 with immune-related genes. H. A bubble plot was 

used to visualize the correlation between TMX1 and m6A-related genes. 
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3.8 Drug Sensitivity Analysis 

To anticipate the reaction to chemotherapy, we employed the pRRophetic algorithm to estimate 

chemotherapy response based on accessible half-maximal inhibitory concentration (IC50) data 

from the Genomics of Drug Sensitivity in Cancer (GDSC) database for patients diagnosed with 

pancreatic adenocarcinoma (PAAD). Our investigation revealed that PAAD patients with 

decreased TMX1 expression demonstrated increased sensitivity to TAE684, Sunitinib, NPK76-II-

72-1, GW843682X, Crizotinib, and AKT inhibitor VIII (P<0.001) (Figure 9A-F). Subsequently, 

we visualized the three-dimensional structures of these six small-molecule compounds using 

PubChem (Figure 9G-L). These findings emphasize the potential of drug sensitivity analysis to 

guide personalized treatment strategies and to establish a basis for precision therapy in patients 

with PC. 

 

 

Figure 9 Drug sensitivity analysis in patients with PC. A-F. Comparison of drug sensitivity between patients 

classified into high TMX1 group and low TMX1 group. G-L. 3D structures corresponding to the aforementioned six 

drugs. 

 

4 DISCUSSIONS 

 

PC, especially pancreatic ductal adenocarcinoma, is a highly aggressive and drug-resistant nature 

of PC, coupled with its significant intratumoral heterogeneity and complex TME, which poses 

substantial challenges for diagnosis and treatment. Multi-omics approaches have emerged as 

widely utilized tools in cancer research to identify diagnostic or prognostic biomarkers and 

features, thereby enhancing our understanding of the fundamental genetics underlying pancreatic 

cancer (PC) (Cid-Arregui & Juarez, 2015).Furthermore, the advent of multiomics techniques has 

https://www.cancerrxgene.org/
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significantly enhanced our understanding of the molecular mechanisms underlying diseases and 

has facilitated a paradigm shift in clinical treatment strategies (Golubnitschaja et al., 2016). M6A 

regulators have been implicated in oncogenic processes underlying cancer development (Liu et al., 

2018). 

 The m6A modification process can be reversed by regulating m6A methyltransferases, 

demethylases, and binding proteins. Extensive research has established a significant correlation 

between m6A modification and cancer, wherein it facilitates self-renewal of tumor stem cells, 

enhances cancer cell growth and proliferation, and confers resistance to radiotherapy or 

chemotherapy (Mao et al., 2019). The collective body of evidence strongly indicates that m6A 

regulators have promising potential as targets for cancer therapy (McGuigan et al., 2018). The 

objective of this study was to investigate the effect of m6ARS on PC systematically. 

In the upstream analysis, we screened for m6ARS at single-cell and global transcriptome 

levels based on AddModule scores, ssGSEA, and WGCNA analysis. Screening at the single-cell 

level accurately captures cell heterogeneity while considering the overall transcriptome level, 

which in turn reflects the overall characteristics of the TME. Simultaneously, we used the SMR 

method to integrate multi-omics data across different types of biological data to identify 

phenotypically related pathogenic genes, reduce the bias caused by confounders, and improve the 

reliability of causal inference. This series of multi-omics analyses led us to obtain three m6ARS, 

namely GCC2, UBE2D3, and TMX1. 

To further investigate the clinical and pathological characteristics and prognosis of PC 

associated with the three m6ARS, we used TCGA-PAAD samples for validation purposes. The 

results indicated no significant difference in the expression levels of GCC2 (P=0.0543). Prognostic 

analysis revealed no statistical disparity between GCC2 and UBEAD3 in OS. Time-dependent 

ROC curve analysis and diagnostic ROC curve analysis yielded outcomes consistent with the 

survival analysis, indicating that neither GCC2 nor UBEAD3 possessed prognostic value. Only 

TMX1 exhibited concordance with the previously observed transcription levels based on the IHC 

staining results. Considering these findings, it is noteworthy that only TMX1 demonstrated 

differential prognostic significance, where high TMX1 expression was associated with poor 

prognosis in PC. 

Gene-gene interaction analysis revealed a close association between TMX1 and its related 

genes, particularly LRRK2, TXN, and TXNL1. Notably, the TXN system functions as an NADPH 

+ H+/FAD REDOX-triggered effector that plays a crucial role in maintaining homeostasis, 

bioenergetics, detoxification drug networks, and cell survival under conditions of oxidative stress-

related diseases (Calandria et al., 2023). The primary role of TXNL1 lies in the regulation of 

oxidative stress and the maintenance of cellular integrity through REDOX homeostasis.Moreover, 

TXNL1 has significant implications for cancer treatment and the management of oxidative stress-

related disorders (Zhao & Qi, 2021). Our findings demonstrate that TMX1 and its associated genes 

primarily participate in the regulation of reactive oxygen species responses, including oxidative 

stress, hydrogen peroxide-induced cellular response, negative modulation of these responses, and 

the control of cell death triggered by hydrogen peroxide and REDOX enzyme activity related to 

sulfur donors.Previous investigations have revealed that the TMX protein family comprises five 

membrane-bound tetratricopeptide repeat domain-containing proteins (TMX1, TMX2, TMX3, 

TMX4, and TMX5) (Oguro & Imaoka, 2019; Haugstetter et al., 2005; Sugiura et al., 2010; Kozlov 

et al., 2010; Matsuo et al., 2001). The proteins under consideration possess an N-terminal signaling 

sequence for targeting the endoplasmic reticulum (ER) and a functional thioredoxin (TRX)---like 

domain. Among the members of the TMX family, TMX1 has been extensively studied, exhibiting 
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a preference for interacting with membrane-binding folding capabilities and clients with folding 

defects (Pisoni et al., 2015). TMX1, which can form disulfide bonds in nascent proteins within the 

endoplasmic reticulum, is highly expressed on the mitochondria-associated membrane (MAM), 

where ER-mitochondrial Ca2+ flux occurs (Zhao et al., 2019). This flux plays a crucial role in 

regulating mitochondrial metabolism, which is often inhibited in tumor tissues, leading to 

chemotherapy resistance and increased tumor growth. As a sulfhydryl-based tumor suppressor, 

TMX1 enhances mitochondrial ATP production and apoptotic processes (Raturi et al., 2016). A 

previous analysis demonstrated TMX1 as an M6A-associated signature gene. According to 

previous studies, the relationship between m6A modification and oxidative stress is intricate. The 

interplay between oxidative stress and m6A modification and its significance in tumorigenesis and 

development is highly complex. M6A modification of genes associated with oxidative stress may 

regulate their own expression, thereby influencing the equilibrium between oxidation and 

antioxidation, as well as subsequent tumor occurrence and progression (Zhao et al., 2019; Sohrabi 

et al., 2019). Therefore, we speculate that TMX1 may contribute to tumor promotion, and the 

upregulation of TMX1 may affect the tumorigenesis of PC through oxidative stress, thus leading 

to the poor prognosis of PC. 

The combination of spatial transcriptomics with scRNA-seq is a key component in linking 

pathological phenotypes of human tissues to molecular alterations, which defines knowledge of 

spatiotemporal molecular medicine and in situ intercellular molecular communication. Spatial 

transcriptomics provides high-throughput molecular profiles and location information via spatial 

barcode microarrays to achieve unbiased localization of transcripts across the entire tissue slice. 

Interestingly, in our single-cell analysis and spatial transcriptomics, we found that TMX1 is mainly 

expressed in monocytes. According to existing studies (Sohrabi et al., 2019), monocytes, regulated 

by oxidative stress, can affect the immune response and thus may be related to tumorigenesis and 

prognosis. These results support our finding that TMX1 may affect PC through oxidative stress. 

Our research also revealed a significant correlation between TMX1 and immune infiltration 

in PC, which ultimately affects its prognosis. These findings suggest that future treatments for PC 

should adopt a comprehensive approach that combines aggressive therapy with immunotherapy 

(Finck et al., 2020). A combined approach that integrates immunotherapy with other modalities is 

regarded as a promising therapeutic strategy. Increasing evidence has demonstrated the pivotal 

role of T cells in immunotherapy (Winter et al., 2020). Specifically, we observed a significant 

positive correlation between TMX1 expression and the abundance of Helper T cells, Th2 cells, 

and TCMs. Ajina and Weiner (2020) previously reported the role of T helper cells in promoting 

the growth, invasion, and metastasis of PC cells. Jacenik et al. (2023) reported that Th2 cells play 

an important role in inhibiting the progression of colon cancer and PC. Goulart et al. (2021) 

elucidated the intricate interplay between T cells and various constituents of the tumor 

microenvironment (TME) in pancreatic cancer (PC) have been extensively studied (Duong et al., 

2021).These findings suggest that TMX1 may serve as a predictive biomarker for PC prognosis 

and response to immunotherapy. In addition, our drug sensitivity analysis identified six potentially 

sensitive agents, including TAE684, Sunitinib, NPK76-II-72-1, GW843682X, Crizotinib, and 

AKT inhibitor VIII (Skaraite et al., 2023). Among them, sunitinib showed tha5 anticancer activity 

in the MIA PaCa-2 and PANC-1 cell lines. Crizotinib may be an effective drug for treating the 

peritoneal spread of PC by inhibiting cancer cell proliferation and invasion, at least in part by 

inhibiting HGF/MET signaling and RhoA activation (Takiguchi et al., 2017). NPK76-II-72-1, 

GW843682X, and AKT inhibitor VIII have not been studied in PC and may be potential PAAD 
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therapeutics, but further analysis is needed in the near future to provide new insights into the 

treatment of patients with PC (Skaraite et al., 2023). 

However, our study had some limitations. First, this study relied on a public database, and 

there may have been sample selection bias. Second, although we validated m6ARS with PC 

progression and prognosis, the specific molecular mechanisms still require further experimental 

investigation. In addition, the role of m6ARS in the distant metastasis of PC has not been fully 

evaluated, and future studies should include more metastatic samples for verification. 

 

5  CONCLUSIONS 

 

This study, which identified m6ARS through a combination of single-cell sequencing and SMR 

analysis, revealed the multilayered role of m6ARS in PC, including its influence on the TIME, the 

value of prognostic assessment, and the regulation of therapeutic response. Notably, we developed 

an effective prognostic profile based on TMX1-related genes in PC. TMX1 may become a 

powerful predictive biomarker of cancer prognosis and immunotherapy response in PC, and 

targeting TMX1 to mediate oxidative stress may be a novel therapeutic approach for PC, providing 

a new target for future drug development. 
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