Kaposi Sarcoma-associated Herpesvirus and Host DNA Methylation

Authors

  • Wei Lian Deng Faculty of Medicine, MAHSA University, Jenjarom 42610, Selangor, MALAYSIA
  • Zeng Yi Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi, CHINA
  • Liu Lin Key Laboratory of Basic Research and Transformation of Tumor Immunity and Infectious Diseases,Youjiang Medical University for Nationalities, CHINA
  • Zou Yu Ting Key Laboratory of Basic Research and Transformation of Tumor Immunity and Infectious Diseases,Youjiang Medical University for Nationalities, CHINA
  • Chen Xiao Qi Shenyang Medical College, Shenyang 110000, Liaoning, CHINA
  • Cao Zi Yi Key Laboratory of Basic Research and Transformation of Tumor Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, CHINA
  • Chen Hai Bo Faculty of Pharmacy and Bioscience, MAHSA University, MALAYSIA
  • Muhammad Fattah Bin Fazel Key Laboratory of Basic Research and Transformation of Tumor Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, CHINA
  • Chew Wei Yun Centre for Pre-University Studies, MAHSA University. MALAYSIA

DOI:

https://doi.org/10.53797/fphj.v3i2.7.2024

Keywords:

DNA methylation, Kaposi’s sarcoma-associated herpesvirus (KSHV), epigenetic, histone modification, tumor suppressor gene, oncogene

Abstract

Malignant tumor is one of the diseases that seriously threaten human health, among which colorectal cancer is one of the common malignant tumors with high morbidity and high mortality. Early diagnosis and treatment is the main way to reduce the mortality of colorectal cancer, so the accurate detection of colorectal cancer-related substances has important clinical significance in recent years. With the rapid development of electrochemical biosensors and nanomaterials, electrochemical sensors based on nanomaterials can realize the detection of tumor-related indicators, which has the advantages of high sensitivity and strong specificity.

Author Biographies

Wei Lian Deng, Faculty of Medicine, MAHSA University, Jenjarom 42610, Selangor, MALAYSIA

Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi, CHINA

Zeng Yi, Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi, CHINA

Key Laboratory of Basic Research and Transformation of Tumor Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, CHINA

References

Abu El-Asrar, A. M., Ahmad, A., Allegaert, E., Siddiquei, M. M., Alam, K., Gikandi, P. W., De Hertogh, G., & Opdenakker, G. (2020). Galectin-1 studies in proliferative diabetic retinopathy. Acta Ophthalmologica, 98(1), e1–e12. https://doi.org/10.1111/aos.14191

Bakkum-Gamez, J. N., Wentzensen, N., Maurer, M. J., Hawthorne, K. M., Voss, J. S., Kroneman, T. N., Famuyide, A. O., Clayton, A. C., Halling, K. C., Kerr, S. E., Cliby, W. A., Dowdy, S. C., Kipp, B. R., Mariani, A., Oberg, A. L., Podratz, K. C., Shridhar, V., & Sherman, M. E. (2015). Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons. Gynecologic Oncology, 137(1), 14–22. https://doi.org/10.1016/j.ygyno.2015.01.552

Ballestas, M. E., Chatis, P. A., & Kaye, K. M. (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science (New York, N.Y.), 284(5414), 641–644. https://doi.org/10.1126/science.284.5414.641

Bogut, A., Stojanovic, B., Jovanovic, M., Dimitrijevic Stojanovic, M., Gajovic, N., Stojanovic, B. S., Balovic, G., Jovanovic, M., Lazovic, A., Mirovic, M., Jurisevic, M., Jovanovic, I., & Mladenovic, V. (2023). Galectin-1 in Pancreatic Ductal Adenocarcinoma: Bridging Tumor Biology, Immune Evasion, and Therapeutic Opportunities. International Journal of Molecular Sciences, 24(21), 15500. https://doi.org/10.3390/ijms242115500

Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M., & Moore, P. S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science (New York, N.Y.), 266(5192), 1865–1869. https://doi.org/10.1126/science.7997879

Chen, F., Huang, T., Ren, Y., Wei, J., Lou, Z., Wang, X., Fan, X., Chen, Y., Weng, G., & Yao, X. (2016). Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: A meta-analysis. BMC Urology, 16(1), 52. https://doi.org/10.1186/s12894-016-0171-5

Chuang, J. C., Warner, S. L., Vollmer, D., Vankayalapati, H., Redkar, S., Bearss, D. J., Qiu, X., Yoo, C. B., & Jones, P. A. (2010). S110, a 5-Aza-2’-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Molecular Cancer Therapeutics, 9(5), 1443–1450. https://doi.org/10.1158/1535-7163.MCT-09-1048

Clark, D. A., & Coker, R. (1998). Molecules in focus Transforming growth factor-beta (TGF-β). The International Journal of Biochemistry & Cell Biology, 30(3), 293–298. https://doi.org/10.1016/S1357-2725(97)00128-3

Corral, J. M., Puerto-Nevado, L. D., Cedeño, M., Río-Vilariño, A., Mahillo-Fernández, I., Galeano, C., Baños, N., García-Foncillas, J., Dómine, M., & Cebrián, A. (2022). Galectin-1, a novel promising target for outcome prediction and treatment in SCLC. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 156, 113987. https://doi.org/10.1016/j.biopha.2022.113987

Deaton, A. M., & Bird, A. (2011). CpG islands and the regulation of transcription. Genes & Development, 25(10), 1010–1022. https://doi.org/10.1101/gad.2037511

Di Bartolo, D. L., Cannon, M., Liu, Y.-F., Renne, R., Chadburn, A., Boshoff, C., & Cesarman, E. (2008a). KSHV LANA inhibits TGF-beta signaling through epigenetic silencing of the TGF-beta type II receptor. Blood, 111(9), 4731–4740. https://doi.org/10.1182/blood-2007-09-110544

Di Bartolo, D. L., Cannon, M., Liu, Y.-F., Renne, R., Chadburn, A., Boshoff, C., & Cesarman, E. (2008b). KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor. Blood, 111(9), 4731–4740. https://doi.org/10.1182/blood-2007-09-110544

Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457–463. https://doi.org/10.1038/nature02625

El-Khoueiry, A. B., Hanna, D. L., Llovet, J., & Kelley, R. K. (2021). Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treatment Reviews, 98, 102221. https://doi.org/10.1016/j.ctrv.2021.102221

Epigenetic Regulation of Kaposi’s Sarcoma-Associated Herpesvirus Latency by Virus-Encoded MicroRNAs That Target Rta and the Cellular Rbl2-DNMT Pathway—PMC. (n.d.). Retrieved 16 May 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826065/

Foran, E., Garrity-Park, M. M., Mureau, C., Newell, J., Smyrk, T. C., Limburg, P. J., & Egan, L. J. (2010). Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Molecular Cancer Research: MCR, 8(4), 471–481. https://doi.org/10.1158/1541-7786.MCR-09-0496

Friborg, J., Kong, W., Hottiger, M. O., & Nabel, G. J. (1999). P53 inhibition by the LANA protein of KSHV protects against cell death. Nature, 402(6764), 889–894. https://doi.org/10.1038/47266 Galectin-1 Influences Breast Cancer Cell Adhesion to E-selectin Via Ligand Intermediaries—PubMed. (n.d.). Retrieved 15 April 2024, from https://pubmed.ncbi.nlm.nih.gov/31719877/

Ganem, D. (2010). KSHV and the pathogenesis of Kaposi sarcoma: Listening to human biology and medicine. The Journal of Clinical Investigation, 120(4), 939–949. https://doi.org/10.1172/JCI40567

Graham, D. K., DeRyckere, D., Davies, K. D., & Earp, H. S. (2014). The TAM family: Phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nature Reviews. Cancer, 14(12), 769–785. https://doi.org/10.1038/nrc3847

Guo, Q., Wang, H.-B., Li, Y.-H., Li, H.-F., Li, T.-T., Zhang, W.-X., Xiang, S.-S., & Sun, Z.-Q. (2016). Correlations of Promoter Methylation in WIF-1, RASSF1A, and CDH13 Genes with the Risk and Prognosis of Esophageal Cancer. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 22, 2816–2824. https://doi.org/10.12659/msm.896877

Guo, Z. S., & Qu, Z. (2021). PDLIM2: Signaling pathways and functions in cancer suppression and host immunity. Biochimica et Biophysica Acta. Reviews on Cancer, 1876(2), 188630. https://doi.org/10.1016/j.bbcan.2021.188630

Huang, K. T., Mikeska, T., Li, J., Takano, E. A., Millar, E. K. A., Graham, P. H., Boyle, S. E., Campbell, I. G., Speed, T. P., Dobrovic, A., & Fox, S. B. (2015). Assessment of DNA methylation profiling and copy number variation as indications of clonal relationship in ipsilateral and contralateral breast cancers to distinguish recurrent breast cancer from a second primary tumour. BMC Cancer, 15, 669. https://doi.org/10.1186/s12885-015-1676-0

Hutajulu, S. H., Indrasari, S. R., Indrawati, L. P. L., Harijadi, A., Duin, S., Haryana, S. M., Steenbergen, R. D. M., Greijer, A. E., & Middeldorp, J. M. (2011). Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Molecular Cancer, 10, 48. https://doi.org/10.1186/1476-4598-10-48

Jeltsch, A., & Jurkowska, R. Z. (2014). New concepts in DNA methylation. Trends in Biochemical Sciences, 39(7), 310–318. https://doi.org/10.1016/j.tibs.2014.05.002

Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692. https://doi.org/10.1016/j.cell.2007.01.029

Journo, G., Tushinsky, C., Shterngas, A., Avital, N., Eran, Y., Karpuj, M. V., Frenkel-Morgenstern, M., & Shamay, M. (2018a). Modulation of Cellular CpG DNA Methylation by Kaposi’s Sarcoma-Associated Herpesvirus. Journal of Virology, 92(16), e00008-18. https://doi.org/10.1128/JVI.00008-18

Journo, G., Tushinsky, C., Shterngas, A., Avital, N., Eran, Y., Karpuj, M. V., Frenkel-Morgenstern, M., & Shamay, M. (2018b). Modulation of Cellular CpG DNA Methylation by Kaposi’s Sarcoma-Associated Herpesvirus. Journal of Virology, 92(16), 10.1128/jvi.00008-18. https://doi.org/10.1128/jvi.00008-18

Jurkowska, R. Z., Jurkowski, T. P., & Jeltsch, A. (2011). Structure and function of mammalian DNA methyltransferases. Chembiochem: A European Journal of Chemical Biology, 12(2), 206–222. https://doi.org/10.1002/cbic.201000195

Kagohara, L. T., Schussel, J. L., Subbannayya, T., Sahasrabuddhe, N., Lebron, C., Brait, M., Maldonado, L., Valle, B. L., Pirini, F., Jahuira, M., Lopez, J., Letelier, P., Brebi-Mieville, P., Ili, C., Pandey, A., Chatterjee, A., Sidransky, D., & Guerrero-Preston, R. (2015). Global and gene-specific DNA methylation pattern discriminates cholecystitis from gallbladder cancer patients in Chile. Future Oncology (London, England), 11(2), 233–249. https://doi.org/10.2217/fon.14.165

Koch, A., Joosten, S. C., Feng, Z., de Ruijter, T. C., Draht, M. X., Melotte, V., Smits, K. M., Veeck, J., Herman, J. G., Van Neste, L., Van Criekinge, W., De Meyer, T., & van Engeland, M. (2018). Analysis of DNA methylation in cancer: Location revisited. Nature Reviews. Clinical Oncology, 15(7), 459–466.https://doi.org/10.1038/s41571-018-0004-4

Lee, S. W. (1996). H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nature Medicine, 2(7), 776–782. https://doi.org/10.1038/nm0796-776

Li, S., Bai, L., Dong, J., Sun, R., & Lan, K. (2017). Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. Advances in Experimental Medicine and Biology, 1018, 91–127. https://doi.org/10.1007/978-981-10-5765-6_7

Liu, R., Gong, M., Li, X., Zhou, Y., Gao, W., Tulpule, A., Chaudhary, P. M., Jung, J., & Gill, P. S. (2010). Induction, regulation, and biologic function of Axl receptor tyrosine kinase in Kaposi sarcoma. Blood, 116(2), 297–305. https://doi.org/10.1182/blood-2009-12-257154

Liu, X., Dai, X., & Wu, B. (2009). Study of 5-Aza-CdR on transcription regulation of RASSF1A gene in the BIU87 cell line. Urologia Internationalis, 82(1), 108–112. https://doi.org/10.1159/000176036

Loughran, G., Healy, N. C., Kiely, P. A., Huigsloot, M., Kedersha, N. L., & O’Connor, R. (2005). Mystique is a new insulin-like growth factor-I-regulated PDZ-LIM domain protein that promotes cell attachment and migration and suppresses Anchorage-independent growth. Molecular Biology of the Cell, 16(4), 1811–1822. https://doi.org/10.1091/mbc.e04-12-1052

Loughran, G., Huigsloot, M., Kiely, P. A., Smith, L. M., Floyd, S., Ayllon, V., & O’Connor, R. (2005). Gene expression profiles in cells transformed by overexpression of the IGF-I receptor. Oncogene, 24(40), 6185–6193. https://doi.org/10.1038/sj.onc.1208772

Luo, C., Zhou, S., Zhou, Z., Liu, Y., Yang, L., Liu, J., Zhang, Y., Li, H., Liu, Y., Hou, F. F., & Zhou, L. (2018). Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 29(4), 1238–1256. https://doi.org/10.1681/ASN.2017050574

Mesri, E. A., Cesarman, E., & Boshoff, C. (2010). Kaposi’s sarcoma and its associated herpesvirus. Nature Reviews. Cancer, 10(10), 707–719. https://doi.org/10.1038/nrc2888

Millares, L., Serra, M., Andreo, F., Sanz-Santos, J., Montón, C., Grimau, C., Gallego, M., Setó, L., Combalia, N., Llatjos, M., Escoda, R., Castellà, E., & Monsó, E. (2015). Assessment of methylation status of locoregional lymph nodes in lung cancer using EBUS-NA. Clinical & Experimental Metastasis, 32(7), 637–646. https://doi.org/10.1007/s10585-015-9733-2

Moore, P. S., Boshoff, C., Weiss, R. A., & Chang, Y. (1996). Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science (New York, N.Y.), 274(5293), 1739–1744. https://doi.org/10.1126/science.274.5293.1739

Moore, P. S., & Chang, Y. (1995). Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and those without HIV infection. The New England Journal of Medicine, 332(18), 1181–1185. https://doi.org/10.1056/NEJM199505043321801

PAN, F.-P., ZHOU, H.-K., BU, H.-Q., CHEN, Z.-Q., ZHANG, H., XU, L.-P., TANG, J., YU, Q.-J., CHU, Y.-Q., PAN, J., FEI, Y., LIN, S.-Z., LIU, D.-L., & CHEN, L. (2016). Emodin enhances the demethylation by 5-Aza-CdR of pancreatic cancer cell tumor-suppressor genes P16, RASSF1A and ppENK. Oncology Reports, 35(4), 1941–1949. https://doi.org/10.3892/or.2016.4554

Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E., & Kloog, Y. (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene, 20(51), 7486–7493. https://doi.org/10.1038/sj.onc.1204950

Peng, K.-Y., Jiang, S.-S., Lee, Y.-W., Tsai, F.-Y., Chang, C.-C., Chen, L.-T., & Yen, B. L. (2021). Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers. Frontiers in Oncology, 11, 716055. https://doi.org/10.3389/fonc.2021.716055

Platt, G., Carbone, A., & Mittnacht, S. (2002). p16INK4a loss and sensitivity in KSHV associated primary effusion lymphoma. Oncogene, 21(12), 1823-1831.

Pucci, M., Malagolini, N., & Dall’Olio, F. (2021). Glycobiology of the Epithelial to Mesenchymal Transition. Biomedicines, 9(7), 770. https://doi.org/10.3390/biomedicines9070770

Purushothaman, P., Dabral, P., Gupta, N., Sarkar, R., & Verma, S. C. (2016). KSHV Genome Replication and Maintenance. Frontiers in Microbiology, 7, 54. https://doi.org/10.3389/fmicb.2016.00054

Qu, Z., Fu, J., Yan, P., Hu, J., Cheng, S.-Y., & Xiao, G. (2010). Epigenetic repression of PDZ-LIM domain-containing protein 2: Implications for the biology and treatment of breast cancer. The Journal of Biological Chemistry, 285(16), 11786–11792. https://doi.org/10.1074/jbc.M109.086561

Qu, Z., Yan, P., Fu, J., Jiang, J., Grusby, M. J., Smithgall, T. E., & Xiao, G. (2010). DNA methylation-dependent repression of PDZ-LIM domain-containing protein 2 in colon cancer and its role as a potential therapeutic target. Cancer Research, 70(5), 1766–1772. https://doi.org/10.1158/0008-5472.CAN-09-3263

Ranscht, B., & Dours-Zimmermann, M. T. (1991). T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron, 7(3), 391–402. https://doi.org/10.1016/0896-6273(91)90291-7

Rodriguez, J., Vives, L., Jordà, M., Morales, C., Muñoz, M., Vendrell, E., & Peinado, M. A. (2008). Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Research, 36(3), 770–784. https://doi.org/10.1093/nar/gkm1105

Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y., & Moore, P. S. (1998). Transcription Mapping of the Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Genome in a Body Cavity-Based Lymphoma Cell Line (BC-1). Journal of Virology, 72(2), 1005–1012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC124571/

Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1412–1417. https://doi.org/10.1073/pnas.0510310103

Shaikh, M. O., Huang, T.-C., Wu, T.-F., & Chuang, C.-H. (2020). Label free Impedimetric Immunosensor for effective bladder Cancer detection in clinical urine samples. Biomedical Microdevices, 22(3), 45. https://doi.org/10.1007/s10544-020-00501-8

Shamay, M., Krithivas, A., Zhang, J., & Hayward, S. D. (2006). Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14554–14559. https://doi.org/10.1073/pnas.0604469103

Siegel, E. M., Riggs, B. M., Delmas, A. L., Koch, A., Hakam, A., & Brown, K. D. (2015). Quantitative DNA methylation analysis of candidate genes in cervical cancer. PloS One, 10(3), e0122495. https://doi.org/10.1371/journal.pone.0122495

Souchelnytskyi, S., Rönnstrand, L., Heldin, C. H., & ten Dijke, P. (2001). Phosphorylation of Smad signaling proteins by receptor serine/threonine kinases. Methods in Molecular Biology (Clifton, N.J.), 124, 107–120. https://doi.org/10.1385/1-59259-059-4:107

Sporn, M. B., & Roberts, A. B. (1990). The Transforming Growth Factor-Betas: Past, Present, and Future. Annals of the New York Academy of Sciences, 593(1), 1–6. https://doi.org/10.1111/j.1749-6632.1990.tb16095.x

Stuber, G., Mattsson, K., Flaberg, E., Kati, E., Markasz, L., Sheldon, J. A., Klein, G., Schulz, T. F., & Szekely, L. (2007). HHV-8 encoded LANA-1 alters the higher organization of the cell nucleus. Molecular Cancer, 6, 28. https://doi.org/10.1186/1476-4598-6-28

Sun, F., Li, L., Yan, P., Zhou, J., Shapiro, S. D., Xiao, G., & Qu, Z. (2019). Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nature Communications, 10(1), 5324. https://doi.org/10.1038/s41467-019-13331-x

Sun, F., Xiao, Y., & Qu, Z. (2015a). Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. The Journal of Biological Chemistry, 290(12), 7362–7368. https://doi.org/10.1074/jbc.C115.637918

Sun, F., Xiao, Y., & Qu, Z. (2015b). Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. The Journal of Biological Chemistry, 290(12), 7362–7368. https://doi.org/10.1074/jbc.C115.637918

Swanton, C., Mann, D. J., Fleckenstein, B., Neipel, F., Peters, G., & Jones, N. (1997). Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature, 390(6656), 184–187. https://doi.org/10.1038/36606

Tanaka, T., Soriano, M. A., & Grusby, M. J. (2005). SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. Immunity, 22(6), 729–736. https://doi.org/10.1016/j.immuni.2005.04.008

The Role of Tumor Microenvironment in the Pathogenesis of Sézary Syndrome—PubMed. (n.d.). Retrieved 15 April 2024, from https://pubmed.ncbi.nlm.nih.gov/35055124/

Torrado, M., Senatorov, V. V., Trivedi, R., Fariss, R. N., & Tomarev, S. I. (2004). Pdlim2, a novel PDZ-LIM domain protein, interacts with alpha-actinins and filamin A. Investigative Ophthalmology & Visual Science, 45(11), 3955–3963. https://doi.org/10.1167/iovs.04-0721

Tso, F. Y., Kossenkov, A. V., Lidenge, S. J., Ngalamika, O., Ngowi, J. R., Mwaiselage, J., Wickramasinghe, J., Kwon, E. H., West, J. T., Lieberman, P. M., & Wood, C. (2018). RNA-Seq of Kaposi’s sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathogens, 14(1), e1006844. https://doi.org/10.1371/journal.ppat.1006844

Tsukita, Y., Fujino, N., Miyauchi, E., Saito, R., Fujishima, F., Itakura, K., Kyogoku, Y., Okutomo, K., Yamada, M., Okazaki, T., Sugiura, H., Inoue, A., Okada, Y., & Ichinose, M. (2019). Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Molecular Cancer, 18(1), 24. https://doi.org/10.1186/s12943-019-0953-y

Tzavlaki, K., & Moustakas, A. (2020). TGF-β Signaling. Biomolecules, 10(3), 487. https://doi.org/10.3390/biom10030487

Ueda, K. (2018). KSHV Genome Replication and Maintenance in Latency. Advances in Experimental Medicine and Biology, 1045, 299–320. https://doi.org/10.1007/978-981-10-7230-7_14

Uenogawa, K., Hatta, Y., Arima, N., Hayakawa, S., Sawada, U., Aizawa, S., Yamamoto, T., & Takeuchi, J. (2011). Azacitidine induces demethylation of p16INK4a and inhibits growth in adult T-cell leukemia/lymphoma. International Journal of Molecular Medicine, 28(5), 835–839. https://doi.org/10.3892/ijmm.2011.756

Ungureanu, D., & Silvennoinen, O. (2005). SLIM trims STATs: Ubiquitin E3 ligases provide insights for specificity in the regulation of cytokine signaling. Science’s STKE: Signal Transduction Knowledge Environment, 2005(304), pe49. https://doi.org/10.1126/stke.3042005pe49

van Kempen, P. M. W., van Bockel, L., Braunius, W. W., Moelans, C. B., van Olst, M., de Jong, R., Stegeman, I., van Diest, P. J., Grolman, W., & Willems, S. M. (2014). HPV-positive oropharyngeal squamous cell carcinoma is associated with TIMP3 and CADM1 promoter hypermethylation. Cancer Medicine, 3(5), 1185–1196. https://doi.org/10.1002/cam4.313

Wang, H.-W., Trotter, M. W. B., Lagos, D., Bourboulia, D., Henderson, S., Mäkinen, T., Elliman, S., Flanagan, A. M., Alitalo, K., & Boshoff, C. (2004). Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nature Genetics, 36(7), 687–693. https://doi.org/10.1038/ng1384

Wang, L., Lin, Y.-L., Li, B., Wang, Y.-Z., Li, W.-P., & Ma, J.-G. (2014). Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer. The Journal of International Medical Research, 42(5), 1085–1092. https://doi.org/10.1177/0300060514540631

Wehbe, H., Henson, R., Meng, F., Mize-Berge, J., & Patel, T. (2006). Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Research, 66(21), 10517–10524. https://doi.org/10.1158/0008-5472.CAN-06-2130

Wu, J., Xu, Y., Mo, D., Huang, P., Sun, R., Huang, L., Pan, S., & Xu, J. (2014). Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6 promotes cell proliferation and migration by upregulating DNMT1 via STAT3 activation. PloS One, 9(3), e93478. https://doi.org/10.1371/journal.pone.0093478

WU Jing, XU Yu-qiao, XU Jian, PAN Shi-yang, SUN Rui-hong, & HUANG Lei. (2012). Influence of viral interleukin-6 on DNA methylation of tumor suppressor gene p16 promoter and its protein expression. Journal of Chinese Practical Diagnosis and Therapy., 26(11), 1053–1056. https://kns.cnki.net/kcms2/article/abstract?v=Skeo7MzZydb7xTHd19lQg5Di_kaChqNP_wLjOgQ759rkNdZnV1DogM_aSwQxIhH7F7Adz_ZOfmsWqmaEuWEImSTYuWEDfhSmUsFmQun8z9qwakgO5LepLWsaJ26dY-7jAL7ffftFTs4=&uniplatform=NZKPT&language=CHS

Zhang, H.-T., Chen, X.-F., Wang, M.-H., Wang, J.-C., Qi, Q.-Y., Zhang, R.-M., Xu, W.-Q., Fei, Q.-Y., Wang, F., Cheng, Q.-Q., Chen, F., Zhu, C.-S., Tao, S.-H., & Luo, Z. (2004). Defective expression of transforming growth factor beta receptor type II is associated with CpG methylated promoter in primary non-small cell lung cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10(7), 2359–2367. https://doi.org/10.1158/1078-0432.ccr-0959-3

Zheng, T., Qian, T., Zhou, H., Cheng, Z., Liu, G., Huang, C., Dou, R., Liu, F., & You, X. (2023). Galectin-1-mediated high NCAPG expression correlates with poor prognosis in gastric cancer. Aging, 15(12), 5535–5549. https://doi.org/10.18632/aging.204806

Zhou, H., Zhang, D., Yang, M., You, X., Zhang, Q., Fu, X., & Wang, D. (2021). The predictive value of galectin-1 and vascular mimicry in the prognostic evaluation of patients with rectal cancer. Translational Cancer Research, 10(3), 1500–1508. https://doi.org/10.21037/tcr-21-121

Zhu, C., Wei, Y., & Wei, X. (2019). AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Molecular Cancer, 18(1), 153. https://doi.org/10.1186/s12943-019-1090-3

Zuo, S., Chen, Y., Xu, L., Tang, Q., & Zou, S. (2007). Re-expression of RASSF1A by 5-Aza-CdR induced demethylation of the promoter region in human biliary tract carcinoma cells. Journal of Huazhong University of Science and Technology. Medical Sciences = Hua Zhong Ke Ji Da Xue Xue Bao. Yi Xue Ying De Wen Ban = Huazhong Keji Daxue Xuebao. Yixue Yingdewen Ban, 27(3), 281–284. https://doi.org/10.1007/s11596-007-0316-6

Downloads

Published

2024-12-26

How to Cite

Wei, L. D., Zeng Yi, Liu Lin, Zou, Y. T., Chen , X. Q., Cao , Z. Y., Chen, H. B., Fazel, M. F. ., & Chew , W. Y. (2024). Kaposi Sarcoma-associated Herpesvirus and Host DNA Methylation. Fitness, Performance and Health Journal, 3(2), 84–100. https://doi.org/10.53797/fphj.v3i2.7.2024