Investigation of the Impact of m6A-Related Characteristic Genes on Pancreatic Cancer Using Mendelian Randomization and Single-Cell Sequencing

Authors

  • Lin Jie MAHSA University, Bandar Saujana Putra, 42610 Selangor, Malaysia
  • Xiaomei Xie Youjiang Medical University for Nationalities, Baise, Guangxi Province, 533000, China
  • Nur Fauwizah binti Azahar MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
  • Miaoge Chen Department of Gastroenterology, Beiliu People's Hospital, Baise, Guangxi Province, 537400, China
  • Soon Siew Choo MAHSA University, Bandar Saujana Putra, 42610 Selangor, Malaysia

DOI:

https://doi.org/10.53797/fphj.v4i1.2.2025

Keywords:

Pancreatic cancer, N6-methyladenosine (m6A), single-cell RNA sequencing, SMR

Abstract

Pancreatic cancer (PC) is an aggressive malignancy with rapid progression and poor prognosis. The genetic heterogeneity of PC contributes to its malignancy. N6-methyladenosine (m6A) RNA modification and its regulatory factors are associated with poor prognosis and immunotherapy efficacy in PC patients. This study aimed to investigate the impact of m6A-related signature genes (m6ARS) on PC using single-cell RNA sequencing (scRNA-seq) and the Secretion Modification Region (SMR) method with multi-omics data. Methods included AddModule scoring, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network analysis (WGCNA) to analyze m6ARS at the single-cell and whole transcriptome levels. The SMR method identified pathogenic genes associated with PC among m6ARS. Patients were stratified into high and low-expression groups based on m6ARS expression, revealing survival differences. Performance was evaluated using receiver operating characteristic (ROC) curves and immunohistochemistry (IHC) staining. Functional and pathway analyses, including GSEA and protein-protein interaction (PPI) networks, were conducted. The clinical value of m6ARS was explored through correlation analysis with clinical parameters, single-cell, and spatial transcriptome analyses, as well as immune microenvironment studies. Drug sensitivity analysis assessed m6ARS's potential role in chemotherapy response. Results identified a turquoise module comprising 882 m6ARS genes at both single-cell and bulk transcriptome levels. SMR analysis found 102 proteins associated with PC, with three key m6ARS genes—GCC2, UBE2D3, and TMX1—showing causal relationships with PC. TMX1 was confirmed as a prognostic marker for PC, with upregulation linked to tumor promotion and worse prognosis. Clinical and immune analyses, as well as drug sensitivity assessments, suggest TMX1's potential as a biomarker for PC prognosis and immunotherapy response. This study integrated single cell sequencing and SMR analysis to identify the shared gene TMX1, emphasizing its potential as a robust prognostic biomarker for PC and its response to immunotherapy. Therefore, targeting TMX1-mediated oxidative stress may represent a novel therapeutic strategy for PC and offer new avenues for future drug development.

Author Biography

Lin Jie , MAHSA University, Bandar Saujana Putra, 42610 Selangor, Malaysia

Department of Tumor Radiotherapy, Youjiang Medical College for Nationalities Affiliated Hospital, Baise, Guangxi Province, 533000, China

References

Ajina, R., & Weiner, L. M. (2020). T-Cell Immunity in Pancreatic Cancer. Pancreas, 49(8), 1014–1023.

Ansari, D., Gustafsson, A., & Andersson, R. (2015). Update on the management of pancreatic cancer: surgery is not enough. World journal of gastroenterology, 21(11), 3157–3165.

Burgess, S., Timpson, N. J., Ebrahim, S., & Davey Smith, G. (2015). Mendelian randomization: where are we now and where are we going?. International journal of epidemiology, 44(2), 379–388.

Calandria, J. M., Bhattacharjee, S., Kala-Bhattacharjee, S., Mukherjee, P. K., Feng, Y., Vowinckel, J., Treiber, T., & Bazan, N. G. (2023). Elovanoid-N34 modulates TXNRD1 key in protection against oxidative stress-related diseases. Cell death & disease, 14(12), 819.

Cid-Arregui, A., & Juarez, V. (2015). Perspectives in the treatment of pancreatic adenocarcinoma. World journal of gastroenterology, 21(31), 9297–9316.

Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human molecular genetics, 23(R1), R89–R98.

Digre, A., & Lindskog, C. (2021). The Human Protein Atlas-Spatial localization of the human proteome in health and disease. Protein science: a publication of the Protein Society, 30(1), 218–233.

Duong, H. Q., Than, V. T., Nguyen, H. T., Nguyen, P. T., Thi, H. T. H., Bui, T. N. H., Dang, V. P. L., Dinh, T. T., You, K. S., Dang, T. H., & Seong, Y. S. (2021). Anaplastic lymphoma kinase inhibitor NVP TAE684 suppresses the proliferation of human pancreatic adenocarcinoma cells. Oncology reports, 45(4), 28.

Finck, A., Gill, S. I., & June, C. H. (2020). Cancer immunotherapy comes of age and looks for maturity. Nature communications, 11(1), 3325.

Fu, Y., & Zhuang, X. (2020). m6A-binding YTHDF proteins promote stress granule formation. Nature chemical biology, 16(9), 955–963.

Golubnitschaja, O., Baban, B., Boniolo, G., Wang, W., Bubnov, R., Kapalla, M., Krapfenbauer, K., Mozaffari, M. S., & Costigliola, V. (2016). Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. The EPMA journal, 7(1), 23.

Goulart, M. R., Stasinos, K., Fincham, R. E. A., Delvecchio, F. R., & Kocher, H. M. (2021). T cells in pancreatic cancer stroma. World journal of gastroenterology, 27(46), 7956–7968.

Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC bioinformatics, 14, 7.

Haugstetter, J., Blicher, T., & Ellgaard, L. (2005). Identification and characterization of a novel thioredoxin-related transmembrane protein of the endoplasmic reticulum. The Journal of biological chemistry, 280(9), 8371–8380.

He, L., Li, H., Wu, A., Peng, Y., Shu, G., & Yin, G. (2019). Functions of N6-methyladenosine and its role in cancer. Molecular cancer, 18(1), 176.

Hou, G., Zhao, X., Li, L., Yang, Q., Liu, X., Huang, C., Lu, R., Chen, R., Wang, Y., Jiang, B., & Yu, J. (2021). SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic acids research, 49(5), 2859–2877.

Hou, J., Wang, Z., Li, H., Zhang, H., & Luo, L. (2020). Gene Signature and Identification of Clinical Trait-Related m6 A Regulators in Pancreatic Cancer. Frontiers in genetics, 11, 522.

Jacenik, D., Karagiannidis, I., & Beswick, E. J. (2023). Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. British journal of cancer, 128(2), 387–397.

Joly, J. H., Lowry, W. E., & Graham, N. A. (2021). Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets. Bioinformatics (Oxford, England), 36(21), 5247–5254.

Kozlov, G., Määttänen, P., Thomas, D. Y., & Gehring, K. (2010). A structural overview of the PDI family of proteins. The FEBS journal, 277(19), 3924–3936.

Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics, 9, 559.

Liu, Z. X., Li, L. M., Sun, H. L., & Liu, S. M. (2018). Link Between m6A Modification and Cancers. Frontiers in bioengineering and biotechnology, 6, 89.

Mao, Y., Dong, L., Liu, X. M., Guo, J., Ma, H., Shen, B., & Qian, S. B. (2019). m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nature communications, 10(1), 5332.

Matsuo, Y., Akiyama, N., Nakamura, H., Yodoi, J., Noda, M., & Kizaka-Kondoh, S. (2001). Identification of a novel thioredoxin-related transmembrane protein. The Journal of biological chemistry, 276(13), 10032–10038.

McGuigan, A., Kelly, P., Turkington, R. C., Jones, C., Coleman, H. G., & McCain, R. S. (2018). Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World journal of gastroenterology, 24(43), 4846–4861.

Oerum, S., Meynier, V., Catala, M., & Tisné, C. (2021). A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic acids research, 49(13), 7239–7255.

Oguro, A., & Imaoka, S. (2019). Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport. Scientific reports, 9(1), 15296.

Pisoni, G. B., Ruddock, L. W., Bulleid, N., & Molinari, M. (2015). Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides. Molecular biology of the cell, 26(19), 3390–3400.

Raturi, A., Gutiérrez, T., Ortiz-Sandoval, C., Ruangkittisakul, A., Herrera-Cruz, M. S., Rockley, J. P., Gesson, K., Ourdev, D., Lou, P. H., Lucchinetti, E., Tahbaz, N., Zaugg, M., Baksh, S., Ballanyi, K., & Simmen, T. (2016). TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. The Journal of cell biology, 214(4), 433–444.

Skaraite, I., Maccioni, E., & Petrikaitė, V. (2023). Anticancer Activity of Sunitinib Analogues in Human Pancreatic Cancer Cell Cultures under Normoxia and Hypoxia. International journal of molecular sciences, 24(6), 5422.

Sohrabi, Y., Lagache, S. M. M., Schnack, L., Godfrey, R., Kahles, F., Bruemmer, D., Waltenberger, J., & Findeisen, H. M. (2019). mTOR-Dependent Oxidative Stress Regulates oxLDL-Induced Trained Innate Immunity in Human Monocytes. Frontiers in immunology, 9, 3155.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell, 177(7), 1888–1902.e21.

Sugiura, Y., Araki, K., Iemura, S., Natsume, T., Hoseki, J., & Nagata, K. (2010). Novel thioredoxin-related transmembrane protein TMX4 has reductase activity. The Journal of biological chemistry, 285(10), 7135–7142.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249.

Taketo, K., Konno, M., Asai, A., Koseki, J., Toratani, M., Satoh, T., Doki, Y., Mori, M., Ishii, H., & Ogawa, K. (2018). The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. International journal of oncology, 52(2), 621–629.

Takiguchi, S., Inoue, K., Matsusue, K., Furukawa, M., Teramoto, N., & Iguchi, H. (2017). Crizotinib, a MET inhibitor, prevents peritoneal dissemination in pancreatic cancer. International journal of oncology, 51(1), 184–192.

Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D., & Saez-Rodriguez, J. (2022). Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome biology, 23(1), 97.

Thanassoulis, G., & O'Donnell, C. J. (2009). Mendelian randomization: nature's randomized trial in the post-genome era. JAMA, 301(22), 2386–2388.

Wang, J., Ishfaq, M., Xu, L., Xia, C., Chen, C., & Li, J. (2019). METTL3/m6A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway. Frontiers in pharmacology, 10, 517.

Winter, H., van den Engel, N. K., Rüttinger, D., Schmidt, J., Schiller, M., Poehlein, C. H., Löhe, F., Fox, B. A., Jauch, K. W., Hatz, R. A., & Hu, H. M. (2007). Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines. Journal of translational medicine, 5, 56.

Wolfgang, C. L., Herman, J. M., Laheru, D. A., Klein, A. P., Erdek, M. A., Fishman, E. K., & Hruban, R. H. (2013). Recent progress in pancreatic cancer. CA: a cancer journal for clinicians, 63(5), 318–348.

Xiao, B., Liu, L., Li, A., Xiang, C., Wang, P., Li, H., & Xiao, T. (2020). Identification and Verification of Immune-Related Gene Prognostic Signature Based on ssGSEA for Osteosarcoma. Frontiers in oncology, 10, 607622.

Yang, H., Liu, D., Zhao, C., Feng, B., Lu, W., Yang, X., Xu, M., Zhou, W., Jing, H., & Yang, J. (2021). Mendelian randomization integrating GWAS and eQTL data revealed genes pleiotropically associated with major depressive disorder. Translational psychiatry, 11(1), 225.

Zhan, Z. Q., & Li, J. X. (2024). Dissecting the roles of oxidative stress gene expression in atopic dermatitis. Journal of the European Academy of Dermatology and Venereology: JEADV, 38(10), e914–e916.

Zhao, J. M., & Qi, T. G. (2021). The role of TXNL1 in disease: treatment strategies for cancer and diseases with oxidative stress. Molecular biology reports, 48(3), 2929–2934.

Zhao, Z., Wu, Y., Zhou, J., Chen, F., Yang, A., & Essex, D. W. (2019). The transmembrane protein disulfide isomerase TMX1 negatively regulates platelet responses. Blood, 133(3), 246–251.

Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., Montgomery, G. W., Goddard, M. E., Wray, N. R., Visscher, P. M., & Yang, J. (2016). Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature genetics, 48(5), 481–487.

Downloads

Published

2025-03-26

How to Cite

Lin, J., Xie, X. ., Azahar, N. F. ., Chen, M. ., & Soon, S. C. (2025). Investigation of the Impact of m6A-Related Characteristic Genes on Pancreatic Cancer Using Mendelian Randomization and Single-Cell Sequencing. Fitness, Performance and Health Journal, 4(1), 9–28. https://doi.org/10.53797/fphj.v4i1.2.2025