Angiotensin Converting Enzyme (ACE) Gene and Muscle Performance in Muay Thai

Authors

  • Bangrak Phuwadol School of Science, Walailak University, 80160, Thailand
  • Pimjan Chawinbhass Department of Sports Science and Exercise Science, Faculty of Health and Sports Science, Thaksin University, 903210, Thailand
  • Apinan Promdontri School of Science, Walailak University, 80160, Thailand

DOI:

https://doi.org/10.53797/fphj.v4i1.3.2025

Keywords:

Polymorphisms, ACE, RAAS, I allele, D allele, MuayThai

Abstract

At present, Martial art sports are very popular. The muscle strength and muscle power are an important factor to contribute the athlete’s performance. It is known that factors that promote physical performances are training, age, sex and genetic differences. Angiotensin converting enzymes (ACE) is the main enzyme in renin angiotensin aldosterone system (RAAS), regulating the circulatory system and water and salts balance in the body. The purpose of this study was to explore the relation between ACE polymorphism and muscle performance in Muay Thai/Thai boxers. The participants were 20 men Thai boxers and 20 controls. The protocols were measure the basic characteristics: weight, height. DNA were extract from buccal cell from mouth-wash method. The polymorphism is a variation of the sequence in the single-nucleotide polymorphisms (SNPs) of ACE gene (insertion or I allele and deletion or D allele) resulting in 3 genotypes: ID, II and DD. The result was showed that the ACE polymorphism ID genotype was highly presented with 55.00% of MuayThai while II and DD genotype was revealed in 45.00% and 25.00% of control groups, respectively. The II genotype in MuayThai showed the significantly different (p £ 0.05) of counter movement jump to ID genotype (50.70 and 46.97, respectively). In contrast with control group that DD genotype presented the highly of CMJ followed by ID and II respectively. This result can be concluded that I allele of ACE genes polymorphism is highly percentage in MuayThai and it was correlated with muscle performance.

References

Ahmetov, I. I., & Rogozkin, V. A. Genes, athlete status and training—An overview. Medicine and Sport Science, 2009; 54, 43–71. https://doi.org/10.1159/000235696

Ahmetov, I. I., Williams, A. G., Popov, D. V., Lyubaeva, E. V., Hakimullina, A. M., Fedotovskaya, O. N., ... & Rogozkin, V. A. (2009). The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Human genetics, 126, 751-761.

Bouchard, C., Lesage, R., Lortie, G., Simoneau, J. A., Hamel, P., Boulay, M. R., & Perusse, L. Aerobic performance in brothers, dizygotic and monozygotic twins. Medicine and Science in Sports and Exercise, 1986;18(6), 639–646. https://doi.org/10.1249/00005768-198612000-00011

Cambien, F., Poirier, O., Lecerf, L., Evans, A., Cambou, J. P., Arveiler, D., & Ricard, S. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature, 1992; 359(6396), 641–644. https://doi.org/10.1038/359641a0

Coates, J. Conversation and Gender, Men Talk: Stories in the Making of Masculinities. Oxford: Blackwell Publishing. Cross Ref. Google Scholar ,2003; 310-335.DOI: https://doi.org/10.1017/CBO9780511781032.016

Collins, K. A., Furuyama, S., & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Current Biology, 2004;14(21), 1968–1972. https://doi.org/10.1016/j.cub.2004.10.034yeastgenome.org

Crisafulli, A., Piras, F., Filippi, M., & Melis, F. Role of heart rate and stroke volume during muscle metaboreflex-induced cardiac output increase: differences between activation during and after exercise. Journal of Physiological Sciences, 2009 ;59(6), 377–384. https://doi.org/10.1007/s12576-009-0093-5

Danser, A. H. J., Schalekamp, M. A. D. H., Bax, W. A., van den Brink, A. M., Saxena, P. R., Riegger, G. A. J., & Schalekamp, M. A. D. H. Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation, 1995 ;92(6), 1387-1388. https://doi.org/10.1161/01.CIR.92.6.1387

Feigelson, H. S., Rodriguez, C., Robertson, A. S., Jacobs, E. J., Calle, E. E., Reid, Y. A., & Thun, M. J. (2001). Determinants of DNA yield and quality from buccal cell samples collected with mouthwash. Cancer Epidemiology Biomarkers & Prevention, 10(9), 1005-1008.

Folland, J. P., Leach, B., Little, T., Hawker, K., & Jones, D. A.

Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Experimental Physiology, 2008;93(5), 630–637. https://doi.org/10.1113/expphysiol.2007.041004

Franchini, E., Del Vecchio, F. B., Matsushigue, K. A., & Artioli, G. G.

Physiological profiles of elite judo athletes. Sports Medicine, 2011;41(2), 147–166. https://doi.org/10.2165/11538580-000000000-00000

Han, G. S. (2018). The relationship between physical fitness and academic achievement among adolescent in South Korea. Journal of physical therapy science, 30(4), 605-608.

Jones, A., Montgomery, H. E., & Woods, D. R. Human performance: a role for the ACE genotype? Exercise and Sport Sciences Reviews, 2002; 30(4), 184–190. https://doi.org/10.1097/00003677-200210000-00008

Kostek, M. A., Hubal, M. J., & Pescatello, L. S. The role of genetic variation in muscle strength. American Journal of Lifestyle Medicine, 2011 ;5(6), 517–529. https://doi.org/10.1177/1559827610387251

MacArthur D.G., North K.N. ACTN3: A genetic influence on muscle function and athletic performance. Exerc Sport Sci Rev, 2007; 35: 30-34.

Maffulli, N., Margiotti, K., Longo, U. G., Loppini, M., Fazio, V. M., & Denaro, V. (2013). The genetics of sports injuries and athletic performance. Muscles, ligaments and tendons journal, 3(3), 173.

Mafra F.P.F., Gattai P.P., Macedo M.M., Mori M.A., Araujo R.C. The angiotensin-I-converting enzyme insertion/deletion in polymorphic element codes for an AluYa5 RNA that downregulates gene expression. The Pharmacogenomics Journal (2018). Available: https://doi.org/10.1038/s41397-018-0020-x (Accessed: 2018, June 23).

Mikami, E., Fuku, N., Murakami, H., Tsuchie, H., Takahashi, H., Ohiwa, N., ... & Tanaka, M. (2014). ACTN3 R577X genotype is associated with sprinting in elite Japanese athletes. International journal of sports medicine, 35(02), 172-177.

MOHAMAD, N. I., CHINNASEE, C., HEMAPANDHA, W., VONGJATURAPAT, N., MAKAJE, N., RATANAROJANAKOOL, P., & PIMJAN, L. (2017). Sports science-based research on the sport of muay thai: A review of the literature. Walailak Journal of Science and Technology (WJST), 14(8), 615-625.

Montgomery, H. E., Clarkson, P., Dollery, C. M., Prasad, K., Losi, M. A., Hemingway, H., ... & Humphries, S. (1997). Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation, 96(3), 741-747.

Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., Hayward, M., Holliman, D. E., Jubb, M., World, M., Thomas, E. L., Brynes, A. E., Saeed, N., Barnard, M., Bell, J. D., Prasad, K., Rayson, M., Talmud, P. J., & Humphries, S. E. Human gene for physical performance. Nature, 393(6682), 1998 ;221–222. https://doi.org/10.1038/30374

Myerson S., Hemingway H., Budget R., Martin J., Humphries S., Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol; 1999 ;87(4): 1313-1316.

Nazarov I.B., Woods D.R., Montgomery H.E., Shneider O.V., Kazakov V.I., Tomilin N.V., Rogozkin VA. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet, 2001 ;9(10): 797-801.

Pimjan L., Ongvarrasopone C., Chantratita W., Polpramool C., Cherdrungsi P., Bangrak P. and Yimlamai T. A Study on ACE, ACTN3, and VDR Genes Polymorphism in Thai Weightlifters. Walailak J Sci & Tech, 2018; 15(9): 609‐626.

Pitsiladis Y., Wang G., Padmanabhan S., Wolfarth B., Fuku N., Lucia A., Ahmetov II, Cieszczyk P., Collins M., Eynon N., Klissouras V. and Williams A. (2013). Genomics of elite sporting performance: What little we know and necessary advances. Adv. Genet; 84: 123-49.

Pruna, R., Artells, R., Ribas, J., Montoro, B., Cos, F., Muñoz, C., ... & Maffulli, N. (2013). Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: influence on degree of injury and recovery time. BMC musculoskeletal disorders, 14, 1-7.

Putri, J. F., & Lukitasari, M. (2015). Alteration of splicing pattern on angiotensin-converting enzyme gene due to the insertion of Alu elements. IJCB, 4(2), 53-58.

Rigat B., Hubert C., Corvol P., Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1, dipeptidylcarboxypeptidase 1). Nucl Acids Res,1992; 20(6): 1443.

Santos, W. O. C., Brito, C. J., Júnior, E. A. P., Valido, C. N., Mendes, E. L., Nunes, M. A. P., & Franchini, E. (2012). Cryotherapy post-training reduces muscle damage markers in jiu-jitsu fighters. Journal of human Sport and exercise, 7(3), 629-638. https://doi.org/10.4100/jhse.2012.73.03

Sevilla, C., Moatti, J. P., Julian-Reynier, C., Eisinger, F., Stoppa-Lyonnet, D., Bressac-de Paillerets, B., & Sobol, H. (2002). Testing for BRCA1 mutations: a cost-effectiveness analysis. European Journal of Human Genetics, 10(10), 599-606.

Smith, D. J. A framework for understanding the training process leading to elite performance. Sports Medicine, 2003 ;33(15), 1103–1126. https://doi.org/10.2165/00007256-200333150-00003

Sorek, R., Ast, G., & Graur, D. Alu-containing exons are alternatively spliced. Genome Research, 2003; 12(7), 1060–1067. https://doi.org/10.1101/gr.229302

Uchiyama K., MIAKI H., Terada S., Hoso M. Effect of Muscle Strength Training and Muscle Endurance Training on Muscle Deoxygenation Level and Endurance Performance. J. Phys. Ther. Sci, 2011; 23(2): 349-355.

Varillas-Delgado, D., Del Coso, J., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Muñoz, A., Maestro, A., & Morencos, E. (2022). Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. European journal of applied physiology, 122(8), 1811-1830.

Villard E, Soubrier F. Molecular biology and genetics of the angiotensin-I-converting enzyme: potential implications in cardiovascular diseases. Cardiovasc Res. 1996; 32(6): 999-1007.

Vincent B., Bock K.D., Ramaekers M, Eede E.V., Leemputte M.V., Hespel P. and Thomis M.A. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol. Genom,2007; 32: 58-63.

Williams A.G., Rayson M.P., Jubb M., World M., Woods D.R., Hayward M. et al., Physiology: The ACE gene and muscle performance. Nature. 2000; 403(6770): 614.

Winnicki M., Accurso V., Hoffmann M., Pawlowski R., Dorigatti F., and Santonastaso M., Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. Am J Med Genet. 2004; 125A (1): 38–44.

Woods D.R., Humphries S.E. and Montgomery H.E. The ACE I/D polymorphism and human physical performance. Trends Endocrinol Metab. 2000; 11: 416-420.

Downloads

Published

2025-06-11

How to Cite

Phuwadol, B., Chawinbhass, P., & Promdontri, A. . (2025). Angiotensin Converting Enzyme (ACE) Gene and Muscle Performance in Muay Thai. Fitness, Performance and Health Journal, 4(1), 29–39. https://doi.org/10.53797/fphj.v4i1.3.2025